© Chengyu Li

Our research is situated at the intersection of fluid dynamics and computation with an emphasis on engineering and healthcare applications. In particular, we focus on developing state-of-the-art computational methods that leverage mathematical models and numerical simulations to improve understanding of biological and physiological flows. Our research is driven by the quests to answer questions from both fundamental fluid dynamics problems and practical applications. Our current research involves computational fluid dynamics (CFD), immersed boundary method, high-performance computing, biological fluid dynamics in nature, and biomedical flow in human respiratory system.  

Bio-Inspired Propulsion

 

We utilize an integrated experimental and computational approach to study the flow physics underlying complex biological locomotion.

 

Collaborator: Haibo Dong (UVa)

Odor-Guided Navigation

 

We examine the dual functions of insect wings including aerodynamics and olfaction to understand how insects achieve a balance between the aerodynamic performance and olfactory sensitivity during odor-tracking flight. 

Human Nasal Airflow

 

We investigate the nasal sinus disease through CT-based CFD modeling techniques to quantitatively evaluate nasal pathology for individual patients.

 

Collaborator: Kai Zhao (OSU)

Massive Flow Separation

 

We analyze the vortex formation and flow separation around wing tip of revolving wings using direct numerical simulations.